Strings2Scores: Automatic Music Transcription for
the Violin

Jason Castillo
dept. Electrical and Computer Engineering
UT Austin
Austin, TX
jzc248

Abstract—This paper discusses the design and imple-
mentation of a machine learning model that uses real violin
recordings to generate the corresponding sheet music. The
architecture is a Sequence-To-Sequence (Seq2Seq) family
type with a Recurrent Neural Network (RNN) and Long
Short-Term Memory (LSTM) model. Constrained data
was used to reduce variance between data samples to
simplify the model. The result was simple sheet music
generated from audio input.

Index Terms—Music transcription, deep learning, end-
to-end systems, seq2seq, RNN, LTSM

I. INTRODUCTION

The creation of modern-day sheet music began in
the 15th century, after the use of printing presses was
more commonplace. This process consisted of passing
a sheet of paper through the printing press 2-3 times
to get the final score. It was incredibly tedious work
since each notation needed to be printed crisply in
order to differentiate between itself and neighboring
notes. Modern violin sheet music transcription allows
for professional music notation but the process contains
manual dependencies. Services still exist for musicians
to pay for other musicians to manually transcribe their
audio files [1].

Digital synthesizers emerged in the 1980s which al-
lowed for straightforward techniques when converting
from audio input to sheet music. The synthesizers mimic
notes that instruments play. In this time, there was
also the development of the Music Instrument Digital
Interface (MIDI) music protocol. MIDI allowed for dig-
ital instruments such as the keyboard, to automatically
create sheet music. While this protocol allowed for
straightforward conversion of digital interfaces, analog
instruments such as strings and woodwinds, cannot use
this tool without extra preparation. Thus, the creation of a
machine learning model was designed and implemented

Carie Navio
dept. Electrical and Computer Engineering
UT Austin
Austin, TX
cen847

which when inputted a waveform recording of a violin,
outputs sheet music.

II. BACKGROUND

Current machine learning models are typically based
for keyboard due to the number of readily available
samples as well as the simplicity in capturing waveform
features from the instrument. A keyboard generates
sound in the following way: when a key is pressed on the
keyboard, a circuit is closed, and the digital equivalent
of that note is outputted through the speaker. In contrast,
analog string instruments have a few major components
which impact the sound: method of sound generation
(i.e. pick, bow), strings, fingerboard, bridge.

The control that violin offers the user in comparison to
piano or another fretted instrument like the guitar, means
that the regularity of hitting the same note twice is never
guaranteed. In fact, Jascha Heifetz, who is regarded as
one of the best violinists of all time, when asked how he
played each note in tune, famously said "I don’t. But I
adjust the note before you notice it was out of tune in the
first place” [2]. The user is also responsible for tuning
the violin strings. In group settings such as chamber,
orchestras, or symphonies, all string instruments must
tune to “concert A” (440 Hz). However, in pieces which
have no accompaniment, the user tunes to a “concert
A” with a variance of frequency from 4+ 2 Hz. This
means that a note may not always correlate to a specific
frequency and thus the design will have to compensate
for a band of frequencies to correlate to a note.

A. Data Constraints

Due to the various techniques used on the violin, in
order to simplify the model, certain aspects the data
needed to be omitted or clearly defined prior to data
collection: vibrato, slurring, pizzicato, harmonics, and

bow position. All of these techniques add more unique
symbols to music engraving. To simplify this project and
to get a proof of concept, many of the techniques were
either omitted or simplified. However, choosing to omit
or simplify these techniques reduced the ability to pull
samples externally.

B. Vibrato

Vibrato is the technique of pulsing the finger pressed
on the fingerboard in order to get an oscillating tone
that creates an enriched sound. While it creates depth
in music, the oscillation aspect of vibrato adds a layer
of complexity because vibrato technique is specific to a
person.

C. Slurring

Slurring is the technique of using the same bow
stroke to play different notes. While slurring traditionally
uses different notes, the variance of the amplitude for
the frequency generated when slurring adds a level of
complexity since the first note played within a slur is
strongest.

D. Pizzicato

Pizzicato is the technique of plucking the string —
usually with the right hand but can also be done with
the left. It creates a sound akin to a guitar and would
require training on pure pizzicato notes to ensure that
the model can distinguish between bow and plucking.

E. Harmonics

Harmonics is the technique of lightly placing a finger
on the fingerboard to generate a sound that resonates on
both sides of the string rather than from the finger to
the bridge of the violin. There are two different types of
harmonics on the violin and each type requires a different
technique as well as notation [3]. Natural harmonics are
created on the open string and can produce the following:
one octave, two octaves, one octave and a fifth above the
open string, and two octaves and a third above the open
string. Artificial harmonics are created by pressing the
index finger (first finger) firmly on the fingerboard and
the pinky finger (fourth finger) lightly to produce the
note that is two octaves higher than the index finger.

F. Bow Position

The position of the bow impacts the sound generated
and the resulting waveform. Bow positioning closer to
the tip creates a smaller waveform while box positioning
closer to the frog (where the hand holds the bow) creates
a much larger waveform with generally more noise.

III. PULLING DATA

The data omitted the use of vibrato, slurring, pizzicato,
and harmonics. All bow strokes were generated at the
middle of the bow — approximately between 1/4 and 3/4
of the length of the bow. Given the imposed constraints
for data collection, there existed no large dataset from
which to pull violin recordings and sheet music from.
Each note was played at a tempo of 100 BPM with a
single bow stroke for each note.

Audio files consisted of the following 2-3 octave major
scales: A, Bb, B, C, Ct, Db, D, E, F, Ft, Gb, G, and Ab.
The result was 34 files. Recording varied from device
to device but each contributor recorded the audio as a
Waveform Audio File Format (WAV) file with 44100 Hz
sampling frequency, monoaural sound, and 32-bit float
recording range.

The sheet music was generated using LilyPond, a
music engraving program. It uses simple text notation as
the input and outputs the corresponding music score via
PDF, SVG, or PNG. LilyPond does not have a graphical
interface so it requires a text editor to verify the music
generated. Figure 1 shows a version of "Twinkle Twinkle
Little Star” using LilyPond music engraving. Frescobaldi
is a text editor and was used in conjunction to LilyPond
to write the sheet music as well as test the output of
music generated.

Zscore {
“new staff {
‘key d \major

|

fis
‘g |
¥ g [} |

|

i

I

d
fis" fis' e’

fis' o

a b b" a2 |

T fis | e’ e d

}
1

Fig. 1: Example of “Twinkle Twinkle Little Star” using
LilyPond in Frescobaldi

Time signature is the notation used to denote the note
value in each measure — a measure is denoted by a bar.
Common Time or C is the time notation of 4/4. 4/4 time
is the default time signature for LilyPond and was used
in this project to reduce memory for the label inputs. 4/4
time means that 4 quarter notes create one measure, with
each quarter note equal to 100 BPM. Since musical note

Feature

St (22

Extraction

Trained
Classifier

Feature = Prediction /

Extraction

ST e

Fig. 2: Simplified model design

time can vary heavily, the model was limited to eighth,
quarter, and half notes.

The key signature, pitch, and note duration were
captured in the program. LilyPond offers a relative
pitch technique which chooses the octave of the note
relative to the previous note. Since this relied on previous
information, the text generation used a stand alone pitch
model.

IV. METHODOLOGY
A. Overall Architecture

The model utilizes a Sequence-To-Sequence (Seq2seq)
approach with a recurrent neural network (RNN), specif-
ically Long Short-Term Memory (LSTM). Seq2Seq was
chosen due to the parameters of the model: given the
sequence of notes in an audio file, generate the sequence
of notes on a musical staff. Using an RNN allows to
utilize information from a previous section to predict
the model. In the example of speech recognition, RNNs
take into account the words, or tokens, near a words
to determine what the phrase will mean. LTSM was
chosen as the RNN in order to track time and frequency
dependent information. The LSTM model also reduces
vanishing and exploding gradient, which occurs with
RRNs. Figure 2 is a graphical representation of the
model design.

B. Audio Extraction

Librosa was used to extract different data from the
WAV files. Multiple features were pulled while de-
termining design: Mel-Frequency Cepstral Coefficients
(MFCCs), Constant-Q Transforms, Melspectrograms,
and Chromagrams. After testing each feature, the mel-
spectrogram was chosen because it most represents
sheet music. Melspectrogram is a series of Fast-Fourier

Transforms (FFTs) over sections of time, in which the
waveform is reshaped from a time domain to a frequency
domain graph as seen in Figure 3. The frequency is then
converted from Hertz to Mel using the equation below:

mel = 10g1(2) x log(1 + %) x 1000
Mel scale represents frequency in relation to the
human ear. Since notes are pitches at certain frequencies,
the output was a close relation to music transcription [7].
Two dimensional array created was with padded to the
length equal to max length of all WAVs captured.

C. Music Score Extraction

The LilyPond markup was stripped of formatting
information as can be seen in Figure 1. The result was
a two-dimensional array with one dimension for the
vocabulary and the other padded to a max size for length
of a sheet music score. Since music scores have finite
options for notation, a predefined vocabulary was used
to compare and capture note attributes.

D. One-Hot

The attributes captured from IV-C, were in the form
of One-Hot encoding. One-Hot encoding is a common
method for dealing with categorical data in machine
learning. It converts data from categorical information to
more easily read machine learning data — ones and zeros
— to improve prediction accuracy. The inverse, One-Hot
Decoder, was created and used to generate the output of
the model prediction into LilyPond-readable syntax.

Mel spectrogram display

+0dB

8192
-10 dB

4096 -20dB

-30dB

2048
m -40 dB

Hz

1024 -50 dB

-60 dB
512
-70 dB

-80 dB

Time

Fig. 3: Melspectrogram Graph for Twinkle Twinkle
Little Star

V. CONCLUSION
A. Final Testing

Many variations of the design were implemented,
including but not limited to: epoch value, feature type,
compile loss type, compile optimizer, vocabulary choice,
model design, LSTM unit size, Tensorflow, and GPU
utilization. The best-case solution involved creating a
Tensorflow dataset of the generated data, loss type set
to “categorical crossentropy”, optimizer set to “adam”,
and setting the unit size of the LSTM model to 248.

B. Optimization

Initially, the model underwent training iterations over
the entire dataset for one epoch at a time, resulting in
jagged graphs and failure to converge. Transitioning to
TensorFlow’s fit method enabled training on the entire
dataset for multiple epochs in each iteration, thereby en-
hancing training efficiency and streamlining the process.
Subsequent optimization strategies include:

e GPU Computation: This was done to allow the
training to be completed faster. Sine not all options
are available for GPU computation, if Tensorflow
in unable to use the GPU, it would revert back to
CPU for those cases.

o Multi-layer LSTM: Up to three layers of LSTM
were added yet there was no improvement. In actu-
ality, the model performed better as a single layer.
Though the impacts were minimal, adding a dropout
of 0.25 between layers improved performance.

o Data Augmentation: Copied data to increase vol-
ume and then applied transformations to the wave
forms. Used a pitched shift for one transformation
and a time shift for another set. The shifts were
random and set to a certain tolerance that won’t
compromise the sample. We saw some better accu-
racy using this data than just the limited data we
have.

o Go Backwards: This is a function that LSTM of-
fers to where it performs the sequence in backwards
and returns the sequence. This had the greatest
contribution to the training models accuracy by far.

o Batch Size: Decreased batch size and saw an
increase of accuracy but greatly decreased training
efficiency. Through manual checks, the optimal size
was determined to be 8.

o LSTM Units: These units are the positive integer,
dimensionality of the output space. In general, in-
creasing this number improved the model accuracy
but can lead to over-fitting if too high.

Loss per Epoch

30 A

28 A

24

22

T
0.0 25 5.0 7.5 10.0

Epoch

Fig. 4: Best Training Model After Optimizations

C. Results

Though the model was able to accurately predict
certain audio files if it was in the trained dataset, it was
not able to predict the output of an untrained WAV file.
The non-scale file was removed from the training dataset
in order to remove another complexity: time between
quarter and half-note. Though this had a positive impact
on trend of the Loss per Epoch, the results were still
incorrect and inconsistent. It is speculated that the lack
of varied training data greatly impacted the results.

Figure 4 is the result of the best training model
generated after including the optimizations.

D. Future Work

It would be beneficial to expand the size of data
being trained to properly test the model. Subsequent
work would be to incrementally remove the constraints
discussed in Section II-A implement a more complex
model.

ACKNOWLEDGMENT

Special thanks to Jamie Spectarr and Olivia Mitchell
for their violin recording contributions!

REFERENCES

[1] “Violin Transcription Service: My Sheet Music transcrip-
tions” My Sheet Music Transcriptions. (2024, Febru-
ary 16). https://www.mysheetmusictranscriptions.com/violin-
transcription-service/

[2] “Intonation the “Impossibility” of Playing in
https://www.simonfischeronline.com/uploads/5/7/7/9/
57796211/205_july\ _intonation.pdf

Tune”

(3]
(4]

(5]
(6]

(7]
(8]

(9]

[10]

(11]

“String Harmonics” https://montgomeryphilharmonic.org/index.
php/members/violin-harmonics/

G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of
Lipschitz- Hankel type involving products of Bessel functions,”
Phil. Trans. Roy. Soc. London, vol. A247, pp. 529-551, April
1955.

J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd
ed., vol. 2. Oxford: Clarendon, 1892, pp.68-73.

I. S. Jacobs and C. P. Bean, “Fine particles, thin films and
exchange anisotropy,” in Magnetism, vol. III, G. T. Rado and
H. Suhl, Eds. New York: Academic, 1963, pp. 271-350.

D Byrd, “A Table of Musical Pitches” https://homes.luddy.
indiana.edu/donbyrd/Teach/MusicalPitchesTable.htm

Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron
spectroscopy studies on magneto-optical media and plastic
substrate interface,” IEEE Transl. J. Magn. Japan, vol. 2, pp.
740-741, August 1987 [Digests 9th Annual Conf. Magnetics
Japan, p. 301, 1982].

M. Young, The Technical Writer’s Handbook. Mill Valley, CA:
University Science, 1989.

R. G. C. Carvalho and P. Smaragdis, “Towards end-to-end
polyphonic music transcription: Transforming music audio di-
rectly to a score,” 2017 IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics (WASPAA),
New Paltz, NY, USA, 2017, pp. 151-155, doi: 10.1109/WAS-
PAA.2017.8170013.

Jason Castillo and Carie Navio. Strings2Scores: Automatic
Music Transcription for the Violin. [Online]. Available: https:
//github.com/conejoking/Strings2Scores

