
Designing and Running Test Suite for a Distributed
System Controlled Re-execution Program

David, Rachelle
Electrical and Computer Engineering

UT Austin
Austin, TX

rd33366

Lopez, Daniel
Electrical and Computer Engineering

UT Austin
Austin, TX

lopezd

Castillo, Jason
Electrical and Computer Engineering

UT Austin
Austin, TX

jzc248

Abstract—This paper provides a very brief overview
of an implementation of the Predicate Control: Synchro-
nization in Distributed Computations with Look-ahead
paper that adds a novel implementation of a controlled re-
execution visualization model inspired by the paper. Then
goes over how software testing was added to account for
any undesirable behaviours that made be present in the
code.

I. INTRODUCTION

Predicate control is a problem of synchronization
across an offline distributed computation in order to
maintain a global predicate. There are two types of
interactions between an application its run-time environ-
ment: observation and control. While observation is typ-
ically events like monitoring load and detecting failures,
control covers topics like dynamically balancing load,
recovering from failures, and resetting variable values
when debugging. Since we are focusing on distributed
control, the real difficulty lies in ensuring the global
conditions via local control actions. Furthermore, we are
specifically interested in synchronization, controlling the
relative timing among processes. The main difficulty in
predicate control is maintaining the given property with-
out causing deadlock with the existing synchronizations.

The model presented here visualizes a distributed
system passing messages between nodes with a ball
being passed among nodes arranged in a grid. There
is a specific thread responsible for capturing the global
state, and then visualizing the result. Inevitably, errors
will occur in which the ball, or message, is no longer

being passed or is no longer trackable. This paper will
discuss the inspiration for this controlled re-execution of
passing the ball and the algorithms used.

II. PROBLEM OVERVIEW

A. Predicate Control

If we model a computation as a partially ordered set of
events, then we can re-frame the predicate control prob-
lem as to determine how to add edges to a computation
so that it maintains a global predicate. Essentially, this
is a question of how to make the partial order stricter.
However, the predicate control problem should be able
to handle any kind of predicate.

The source paper analyzes three classes of predicates.
The first is “disjunctive predicates,” which express a
global condition in which at least one local condition
has occurred. An example of this is “at least one server
is available,” or in our model, “at least one node has the
ball.” The second class of predicates is “mutual exclusion
predicates,” in which no two processes are in the critical
sections at the same time. From the perspective of the
ball-passing model, this could be “no two nodes have
the ball at the same time.” These two classes form basic
interpretations of the predicate control problem.

The third class is a generalization of mutual exclusion
to include two additional properties. One of these types
of predicates are “readers writers predicates,” which
specifies that only “write” critical sections must be
exclusive but “read” critical sections are not exclusive.
The second generalization is of “independent mutual



exclusion predicates,” in which critical sections have
“types” associated with them so that no two critical sec-
tions of the same type can execute simultaneously. Thus,
the class of “generalized mutual exclusion predicates”
allows both read and write critical sections as well as
multiple types of critical sections. In terms of our model,
we can think of these as “read: ask a node if they have
the ball; write: pass the ball.” Our focus will be on this
third class of predicates.

B. Computations and Intervals

Before we discuss the algorithms in depth, we
must first present supporting frameworks for predicates,
processes, and problems. A distributed computation,
which we will just call a computation, is a tuple
⟨E1, E2, ...En,→⟩ where the Ei’s are disjoint finite sets
of “events” or “processes” and → or “precedes” is an
irreflexive partial order. We abbreviate this computation
to be ⟨E,→⟩ with the understanding that the size of the
partition of E is n. In this partial ordering, if e → f
then we say e “casually precedes” f . Furthermore, a
computation is a run if → is a total order.

Predicates represent our understanding of properties
on local or global states. Properties local to a process
might be whether the process is in the critical section,
whether the process has a token, and so on. Global
states include properties across multiple processes, such
as whether two processes are in the critical sections,
whether at least one process has a token, and comparison
of variables on different processes.

Each Ei has a corresponding special “dummy” event
⊥i such that ⊥i /∈ E and it initializes the state of process
Ei. Additionally, for each i, we let ≺i be the smallest
relation on Ei ∪ {⊥i} such that ∀e ∈ Ei :⊥i≺i e, and
∀e, f ∈ Ei : e →i f ⇒ e ≺i f .

An interval I is a non-empty subset of an Ei ∪ {⊥i}
corresponding to a maximal subsequence in the sequence
of events in ⟨Ei ∪ {⊥i},≺i⟩, such that all events in I
have the same value for αi, in which αi’s comprise a set
of local predicates.

Given a set of intervals, we use I1 7→ I2 to represent
the notion that “I1 must enter before I2 can leave.”

In order to formally state the problem, we need
one more concept, that of a “controlling computation,”
which intuitively is a stricter computation for which
all consistent cuts satisfy the predicate. More formally,
given a computation ⟨E,→⟩ and a global predicate ϕ,
a computation ⟨E,→c⟩ is called a controlling compu-
tation of ϕ in ⟨E,→⟩, if: (1) →⊆→c, and (2) for all
consistent cuts C in ⟨E,→c⟩ : ϕ(C).

a b c

e f

Fig. 1. A Directed Graph used to demonstrate SCCs

Now, we can define the Predicate Control Problem
as: Given a computation ⟨E,→⟩ and a global predicate
ϕ, is there a controlling computation of ϕ in ⟨E,→⟩?

Before we discuss approaches to solve this prob-
lem, we need to define one more key feature: strongly
connected components. A directed graph is considered
strongly connected if there is a path between all pairs of
vertices. A strongly connected component (SCC) of
a directed graph is a maximal strongly connected sub-
graph. For example, there are 3 SCCs in the figure 1, the
subgraphs are as follows: SCC = {{a, b, e}, {c}, {f}}.

Now, we have all the tools necessary to solve the
predicate control problem.

C. Generalized Mutual Exclusion Predicate Algorithm

In order to design an algorithm to solve the general-
ized mutual exclusion predicate control problem, we first
start with the simplified classes of predicates, starting
with Disjunctive Predicates. The central idea is that the
algorithm inputs n sequences of intervals for each of
the processes and produces a sequence of added edges.
This sequence of added edges links true intervals into
a continuous “chain” from the start of the computation
to the end. Any cut must either intersect this chain in
a true interval, in which case it satisfies the disjunctive
predicate, or in an edge, in which case the cut is made
inconsistent by the added edge.

When we consider Mutual Exclusion Predicates, we
make use of the fact that the critical sections in a process
are totally ordered. The key idea used in the algorithm
is to maintain a frontier of critical sections that advances
from the start of the computation to the end. Instead of
finding a minimal critical section of the whole interval
graph, we merely find a minimal critical section in the
current frontier. It is guaranteed to be a minimal critical
section of the remaining critical sections in the interval
graph at that point.

Utilizing the previously described algorithms, we
could design a simple algorithm based on determining
the strongly connected components in the critical section

2



graph and then topologically sorting them. Instead, we
use the concept of a “general interval” or a sequence of
intervals in a process that belong to the same strongly
connected component of the interval graph.

The algorithm maintains a frontier of general criti-
cal sections that advances from the beginning of the
computation to the end. In each iteration, the algorithm
finds the strongly connected components (scc’s) of the
general critical sections in the frontier. Then, it picks
a minimal strongly connected component, a candidate,
from among them. However, the candidate is not neces-
sarily a minimal scc of the entire critical section graph.
In fact, it need not even be an scc of the entire graph. To
determine if it is, we find the mergeable set of critical
sections that immediately follow the general critical
sections and belong to the same scc. If mergeable is not
empty, the critical sections in mergeable are merged with
the general critical sections in candidate to give larger
general critical sections and the procedure is repeated. If
mergeable is empty, then it can be shown that candidate
is a minimal scc of the graph. Therefore, we check that
it meets the sufficient conditions of validity, and then
append it to the chain. After the main loop terminates, the
scc’s in the chain are connected using added edges which
define the controlling computation, and the algorithm is
complete. A simple implementation of the algorithm will
have a time complexity of O(n2p). However, a better
implementation of the algorithm would be O(np) by
avoiding redundant computations.

III. APPLICATIONS

The Predicate Control Problem has a few general
applications, and we will focus on two specific domains:
software fault-tolerance and distributed debugging. We
first discuss the challenges with applying predicate con-
trol in the real-world, then briefly observe fault-tolerance.

When mapping the abstract concept of predicate con-
trol, some issues arise. For the computation, tracing
is a prerequisite for applying predicate control, and
tracing takes time and memory. From a global predicate
perspective, there always must be a shared resource that
interacts with the system. Finally, in order to implement
the controlling computation, there must be a method
of replaying the traced computation and overlaying the
synchronizations. This takes time and memory, and is a
point of research in itself.

Distributed systems require fault tolerance, since pro-
grams often experience failures, such as races, due to
synchronization faults. Some recovery methods include:

1) simple re-execution: simply re-execute and hope
that the race does not re-occur

2) locked re-execution: apply file-system locks to
each access during re-execution

3) controlled re-execution: add synchronizing mes-
sages to implement predicate control

Our implementation leverages specifically controlled
re-execution as the motivation for our model.

IV. OUR IMPLEMENTATION

When analyzing the predicate control problem and
related solutions previously presented, we found it most
useful to visualize the system and processes sending
messages from one to another. As previously discussed,
in order to synchronize and maintain that global perspec-
tive, there sometimes occurs a fault in which the global
state loses track of this passing of a message. As a result,
we implemented a controlled re-execution application of
the predicate control problem.

A. Model

In order to visualize a distributed system, we chose
to implement a two-dimensional array of nodes, or
processes, arranged in a grid. Each node is connected
to at most 8 of its available neighbors: columns, rows,
and diagonals. Figure 2 demonstrates the arrangement of
this model.

In our implementation, each node is a two dimensional
array of 16x16 integers (i.e. int[16][16]) initialized
to 0’s and runs its own thread.

In this visualization of a distributed system, we use a
red ball to represent a change in state within that node, or
process, and we notify the “next” node of that change via
a message. As a result, the ball essentially demonstrates
a message being passed between nodes.

The ball is a 32-bit integer, greater than 0, in which
the lower 4 bits indicate the direction of movement.

In this model, what we visualize is the global state
as captured by an observation thread. This thread is
responsible for finding the ball within the network and
drawing it to the screen as a red dot on a canvas. This
canvas is the visual representation of our grid system, so
that we can observe the current global state as well as
controlled-re-execution as faults occur.

3



a1 a2 an

b1 b2 bn

m1 m2 mn

Fig. 2. Visualization of the System Model

B. Direction Mapping

The implemented state machine will move a ball in
the direction it is currently moving in, until it reaches
a node at the corner or edge. At that point, it will
“bounce” off the edge in a supplementary angle and
off a “corner” in a complementary angle. The “bounce”
involves changing the lower 4 bits of the ball, which
correlate to the direction of movement.

Figure 3 demonstrates how directions are mapped in
ball movement.

0 1 2

7 3

6 5 4

Fig. 3. Direction Map

C. Controlled Re-execution

When applying these theoretical models in the real-
world, we must practically synchronize and maintain
the global perspective, and inevitably faults occur in
which the observation thread loses track of the ball
being passed in its global snapshot. We were inspired by
the Generalized Mutual Exclusion Predicate Algorithm
to implement a controlled re-execution application of
the predicate control problem. However, we found it
impractical to scale to a large quantity of processes in
the system, as we had around 800-1000 nodes.

We leveraged the Generalized Mutex Algorithm since
we can present our model as a generalized mutex predi-

cate: a thread must read to “ask a node if they have the
ball” while a thread must write to “pass the ball.”

As we scaled, we used the basis of this algorithm
to pursue a more practical method of controlled re-
execution, in which we leverage timestamps to revert
to a previous global snapshot and re-execute from there.
Our algorithm is generally as follows:

iterate through every node i:
if i’s timestamp of last having the ball is greater

than our running greatest timestamp then:
update the running greatest timestamp to i’s

timestamp of last having the ball
reset i’s timestamp to 0

set timestamp of the last node to have the ball to 1
re-execute the ball passing from the location of the
greatest timestamp to last have the ball

With this algorithm, the observation thread essentially
searches until it finds the node that last had the ball
with the highest timestamp, resets all the nodes, and re-
executes.

D. Adding Complexity

The model we presented thus far only incorporates
a single “ball” being passed, however in a different
model, it is possible for multiple balls to be passed
simultaneously. This would change our predicate to have
multiple critical sections characterized by the passage of
multiple balls.

Although we did not implement multiple balls, a few
challenges arise with accommodating this complexity.
Firstly, we must decide how we want to model inter-
secting balls. Our assumption would be that we need to
include channels to control how balls are passed. This
would also alleviate the question of intersecting balls,
since balls on different channels can pass through each
other. Secondly, we must decide how we handle re-
execution when one ball faults. Do we revert back to
the global snapshot for all balls? Or only for the ball
with the fault? We propose to revert back to the previous
non-faulty state for all balls, in order to prevent further
complexity of ball tracking.

E. Testing Opportunity

Although the initial implementation of the distributed
system algorithm demonstrated success in analyzing re-
execution and predicate control, concerns arose regarding
potential unnoticed undesirable behaviors. Initial test-
ing during this implementation phase relied on manual

4



verification and standard code debugging techniques.
However, the adoption of a comprehensive software test
suite allows for a systematic evaluation of the code, cov-
ering all possible edge cases and diverse ball movement
directions. This approach enhances the robustness of the
testing process, ensuring a more thorough examination
of the distributed system’s behavior.

F. Test Suite Implementation

JUnit tests were designed to assess the functionality
of how the message traversed the network using the In-
telliJ IDE. These tests cover various scenarios, including
movements in different directions (up, down, left, right,
and combinations), ball finding, and the execution of
the main method in the Control class. Each movement
test initializes a Network System, simulates a specific
movement, and verifies the success of the movement by
examining the lastClock property of a particular cell in
the world. The ball-finding test sets up conditions for a
ball to be present, calls the findBall method, and checks
if the ball is successfully detected. Overall, these tests
provide a comprehensive evaluation of the NetworkSys-
tem class’s core functionalities and node coverage.

V. ANALYSIS AND CONCLUSION

In the original implementations of this model for the
distributed system class, a system grid of 35x25 nodes
was mostly used, resulting in 875 total nodes on our
system. With a system of this size, it was nearly always
encountered a fault within minutes of initial execution.
This reinforced a need for fault tolerance and recovery
methods for real world networks and why a robust testing
suite is needed.

It was identified that most of the original code was
hard coded and not setup for testing with a JUnit test
class. The original code had to be modified to allow
values to be passed into the network and ball creation
methods to test different paths and network sizes. The
tests were ran with test coverage and initially we only
had 25% Node coverage and we would the tests would
end prematurely. After modification of test order and
adding tests, we were able to achieve a 98% node
coverage as seen in figure 4.

The test suite was able to identify numerous issues and
pinpoint their fault locations in the code. After step by
setp corrections we were able to make the program more
robust. This project was a good exercises to show the
need of software testing to make any code more robust
and ready for the field.

Fig. 4. Node Coverage at 98%

REFERENCES

[1] A. Tarafdar and V. K. Garg, “Predicate Control: Synchronization
in Distributed Computations with Look-ahead,” UT internal
paper.

[2] GeeksForGeeks, “Strongly Connected Components,” website,
2022.

5


